

RECEIVED

JUL 0 2 2015

Office of Enforcement, Compliance and Environmental Justice (UFO)

July 1, 2015

G. Clark Davenport
U.S. EPA Region 8
8ENF-UFO, Class V
Underground Injection Control
1595 Wynkoop Street
Denver, CO 80202-1129

UIC Class V File

UIC PERMIT & ID #: COSO927 · CA914

Invent. Inspect. Monit. EPA Corres. Corres.

RE: UIC Final Permit # CO50927-04914

Kwik Stop System #1 - Septic System Receiving Carwash Waste Fluids Kwik Stop Carwash

916 Highway 115 Penrose, CO 81240

Dear Mr. Davenport,

On June 15 and 23, 2015 at 8:37 and 8:10, respectively, using a sterile container, I, Angela Bellantoni, extracted a grab sample from the second tank (Tank #2) of the septic tank system treating water discharged from the above referenced carwash. The sample was poured into two containers provided by ALS Laboratory Group and shipped under ice to the analytical laboratory at 225 Commerce Drive, F Ft. Collins, CO 80524. I relinquished the sample cooler to Master Shippers, 306 Main Street, Cañon City, CO at 2:45 pm on June 15 and 2:15 pm on June 23.

ALS Laboratory analyzed for volatile organic compounds on June 30, 2015, total recoverable metals and mercury on June 23, 2015. The analytical methods and quality control used by laboratory personnel are included in the enclosed analytical results report.

I certify under the penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fines and imprisonment.

Angela M. Bellantoni Ph.D.

Enclosure: ALS Laboratory analytical report

Cc: Alan Drake, Kwik Stop Food Stores

1107 Main Street, Cañon City, CO 81212 www.envalternatives.com • e-mail: eai@bresnan.net Phone: 719-275-8951 • Fax: 719-275-1715

Kwik Stop Store Penrose Colorado UIC Final Permit # CO50927-04914

Analytical Results Summary Report generated 7/1/2015

Result

	(mg/L)	(mg/L)	(mg/L)
GC/MS Volatiles		2/19/2015	6/30/2015
Analyte*			
Acetone	7.000	0.01	0.017
Chloroform	0.080	0.0052	0.0069
Bromodichloromethane	0.080	0.0012	ND
4-methyl-2-pentanone		0.0049	0.017
Toluene	1.000	0.00047	0.002
Tetrachloroethene	0.005	0.00054	ND
Dibromochloromethane	0.080	0.00037	ND
Xylenes	10.000	0.00031	0.00034
1,2,4-trimethylbenzene		0.00062	ND
Naphthalene	0.100	0.0015	ND

Permit limit Result

Total Recoverable Metals

Analyte			6/23/2015
Antimony	0.006	0.0019	0.0021
Arsenic	0.010	0.0024	0.0034
Barium	2.000	0.081	0.12
Beryllium	0.004	ND	ND
Boron	1.400	0.1	0.87
Cadmium	0.005	0.00061	0.0011
Chromium (total)	0.100	ND	ND
Copper	1.300	0.016	0.048
Iron	5.000	2.1	3.7
Lead	0.015	0.0036	0.013
Manganese	0.800	0.18	0.38
Mercury	0.002	ND	ND
Molybdenum	0.040	0.0052	0.0048
Nickel	0.100	0.0088	0.01
Selenium	0.050	0.002	ND
Silver	0.100	ND	ND
Strontium	4.000	0.32	0.27
Thallium	0.002	ND	ND
Zinc	2.000	0.079	0.16

*Only VOCs present in sample are listed. The list does not reflect all target VOCs.

Ft. Collins, Colorado

LIMS Version: 6.768

Page 1 of 1

Tuesday, June 23, 2015

Angela Bellantoni Environmental Alternatives, Inc. 1107 Main Street Canon City, CO 81212

Re: ALS Workorder: 1506284

Project Name: Kwikstop

Project Number: KSS1506

Dear Ms. Bellantoni:

One water sample was received from Environmental Alternatives, Inc., on 6/16/2015. The sample was scheduled for the following analysis:

Metals

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sincerely.

Project Manager

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 | PHONE +1 970 490 1511 | FAX +1 970 490 1522 ALS GROUP USA, CORP. Part of the ALS Laboratory Group An ALS Limited Company

ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environme	ental – Fort Collins
Accreditation Body	License or Certification Number
Alaska (AK)	UST-086
Alaska (AK)	CO01099
Arizona (AZ)	AZ0742
California (CA)	06251CA
Colorado (CO)	CO01099
Connecticut (CT)	PH-0232
Florida (FL)	E87914
Idaho (ID)	CO01099
Kansas (KS)	E-10381
Kentucky (KY)	90137
L-A-B (DoD ELAP/ISO 170250)	L2257
Maryland (MD)	285
Missouri (MO)	175
Nebraska(NE)	NE-OS-24-13
Nevada (NV)	CO000782008A
New Jersey (NJ)	CO003
New York (NY)	12036
North Dakota (ND)	R-057
Oklahoma (OK)	1301
Pennsylvania (PA)	68-03116
Tennessee (TN)	2976
Texas (TX)	T104704241
Utah (UT)	CO01099
Washington (WA)	C1280

1506284

Metals:

The sample was analyzed following Methods for the Determination of Metals in Environmental Samples – Supplement 1 procedures. Analysis by Trace ICP followed method 200.7 and the current revision of SOP 807. Mercury analysis by CVAA followed method 245.1 and the current revision of SOP 812.

The preparation (method) blank associated with each digestion batch was below the reporting limit for the requested analytes, with the exception of barium and strontium. The associated samples contained more than ten times the concentration of barium and strontium detected in the method blank, so no further action was taken.

All acceptance criteria were met.

Sample Number(s) Cross-Reference Table

OrderNum: 1506284

Client Name: Environmental Alternatives, Inc.

Client Project Name: Kwikstop Client Project Number: KSS1506

Client PO Number:

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
Tank #2	1506284-1		WATER	15-Jun-15	8:37

ALS

ALS Environmental

225 Commerce Drive, Fort Collins, Colorado 80524
TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522

Chain-of-Custody

Turnaround time for samples received after 2 p.m. will be calculated beginning from the next business day.

Turnaround time for samples received Saturday will be calculated beginning from the next business day.

1506284

ALS WORKORDER#

(TURNAROUN	DTIME	45	days	SAMP	LER Q	Bell	ent	m	`			PA	GE		•	of	
PROJECT NAME	Kinik Stop		SITE ID	ρ	enus Penuse									DISP	OSAL.	BY	LAB	or	RETURN
PROJECT No.	Ks5	EDD FO									PARA	METER	/METH	OD RE	QUES	r FOR	ANALY	SIS	
		PURCHASE C	ORDER						Α	V	OC	S							
COMPANY NAME	ERI	BILL TO COR	IPANY						В	Me	ta	LS		19.4	al	Le	دوس	نده	bl-
SEND REPORT TO	Angele Bellanton' 1109 Main St Caron City, CO 81212 719-275-8971 719-275-1715	INVOICE AT	TNTO						С	,									
ADDRESS	1109 Main St	ADI	DRESS						D							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
CITY/STATE/ZIP	Caron City, CO 81212	CITY / STAT	E/21P						E				744.4						
PHONE	719-275- 8951	F	HONE						F										
FAX	719-274-1715		FAX						G		************			****	-				
E-MAIL	angele Denvacterratives. co	7	E-MAIL						Н										
	U								1										
	The state of the s								J							-		-	***************************************
LABID	FIELD ID	MATRIX		IPLE TE	SAMPLE TIME	#OF BOTTLES	PRESERVATIVE	QC	А	В	С	a	E	F	G	н	1	J	SEE NOTES SECTION
(0)	Tant #2	W	6/15	115	8:37A	4	~	0	1										
				(1)						-				-			-		
		-															-		
		- 																	
			<u> </u>																
						ĺ													
	**************************************													-				 	
														-					
			 															 	
																		ļ!	
*Time Zone (Circle): [ST CST MST PST Matrix: O = oil S = soil NS = nor	soil solid W = wat	er L=li	quid E	= extract F = filte	er													
	NOTES	SAME PURE 100	,		202r9	12-	SIGNATURE	_				ITED N				DATE		1.	TIME
-	RE	PORT LEVEL / QC REQUIRED		RELD	NQUISHED BY	MAN	proje	hu		An	rele	h	Bell	eth	-6/1	510		14 2	
		Summary (Standard QC)		RE	CEIVED BY	910	felle	_		And	m	ete	215	on	1011	61	5	09	40
On .	10.98	(Standard QC)		RELH	NQUISHED BY										-1				
of 12	Į 0 .5	LEVEL III (Std QC + forms)		RE	CEIVED BY														
		QC + forms + raw		RELI	NQUISHED BY														
PRESERVATION KEY	1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaOH/ZnAcetate 6-NaHSO	7-4°C 8-Other	1	RE	CEIVED BY														

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

Client: EA) Workorder N	o: (50	62	8,4	
Project Manager: APW Initial	Is: ECP	Date:	le lle li	<u>.</u> 5
1. Does this project require any special handling in addition to standard ALS procedures	s?	***	YES	(NO)
2. Are custody seals on shipping containers intact?		NONE	YES	NO
3. Are Custody seals on sample containers intact?		NONE	YES	NO
4. Is there a COC (Chain-of-Custody) present or other representative documents	s?		YES	NO
s. Are the COC and bottle labels complete and legible?			YES	NO
6. Is the COC in agreement with samples received? (IDs, dates, times, no. of sam containers, matrix, requested analyses, etc.)	ples, no. of		YES	NO
7. Were airbills / shipping documents present and/or removable?		DROP OFF	(YES)	NO
8. Are all aqueous samples requiring preservation preserved correctly? (excluding volation	iles)	N/A	YES	NO
9. Are all aqueous non-preserved samples pH 4-9?		(N/A)	YES	NO
10. Is there sufficient sample for the requested analyses?	p.		YES	МО
11. Were all samples placed in the proper containers for the requested analyses?			YES	NO
12. Are all samples within holding times for the requested analyses?			YES	NO
13. Were all sample containers received intact? (not broken or leaking, etc.)			(YES)	NO
14. Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, r headspace free? Size of bubble: < green pea > green pea	adon)	N/A	YES	NO
15. Do any water samples contain sediment? Amount of sediment: X dusting moderateheavy OU	Amount bothes	N/A	YES	NO
16. Were the samples shipped on ice?			YES	NO
17. Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2	<i>(</i> 4)	RAD ONLY	YES	(NO)
Cooler #: Temperature (°C): 10.76 No. of custody seals on cooler: No. of custody seals on cooler: External μR/hr reading: 10 Background μR/hr reading: 12 Were external μR/hr readings ≤ two times background and within DOT acceptance criteria? (YES)/NO Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUEST Proceed with analysis fer Angela. Multiples				
If applicable, was the client contacted YES NO / NA Contact: Angela, Bella Project Manager Signature / Date:	ntonio 6 (15	_ Date/Ti	me: lessi	10/15 and

*IR Gun #2: Oakton, SN 29922500201-0066 *IR Gun #4: Oakton, SN 2372220101-0002 ORIGIN ID. PUBA (719) 275-0259
SUSTE PACHEGO
MOSTER PRINTERS
306 MAIN STREET

CANON CITY CO B1212
UNITED STATES US

TO

ALS ENVIRONMENTAL
225 COMMERCE DRIVE

FORT COLLINS CO 80524

REP.
DEPT.

TIME - 16 JUN 10:30A

TRICH 0201 6331 6676 0282

TUE - 16 JUN 10:30A

TRICH 0201 6331 6676 0282

TO

80524

CO-US DEN

SAMPLE SUMMARY REPORT

Client:

Environmental Alternatives, Inc.

Project:

KSS1506 Kwikstop

Sample ID:

Tank #2

Legal Location:

Collection Date: 6/15/2015 08:37

Date: 23-Jun-15

Work Order: 1506284

Lab ID: 1506284-1

Matrix: WATER

Percent Moisture:

Analyses	Result	Report Qual Limit	Units	Dilution Factor	Date Analyzed
Mercury		EPA245.1	Pi	rep Date: 6/17/2015	PrepBy: NAQ
MERCURY	ND	0.0002	MG/L	1	6/18/2015 13:12
Total Recoverable Metals by 200.8		EPA200.8	Pi	rep Date: 6/17/2015	PrepBy: CDR
SILVER	ND	0.1	UG/L	10	6/22/2015 16:37
ARSENIC	3.4	2	UG/L	10	6/22/2015 16:37
BORON	87	50	UG/L	10	6/22/2015 16:37
BARIUM	120	1	UG/L	10	6/22/2015 16:37
BERYLLIUM	ND	0.5	UG/L	10	6/22/2015 16:37
CADMIUM	1.1	0.3	UG/L	10	6/22/2015 16:37
CHROMIUM	ND	10	UG/L	10	6/22/2015 16:37
COPPER	48	10	UG/L	10	6/22/2015 16:37
IRON	3700	100	UG/L	10	6/22/2015 16:37
MANGANESE	380	2	UG/L	10	6/22/2015 16:37
MOLYBDENUM	4.8	1	UG/L	10	6/22/2015 16:37
NICKEL	10	5	UG/L	10	6/22/2015 16:37
LEAD	13	0.5	UG/L	10	6/22/2015 16:37
ANTIMONY	2.1	0.3	UG/L	10	6/22/2015 16:37
SELENIUM	ND	1	UG/L	10	6/22/2015 16:37
STRONTIUM	270	1	UG/L	10	6/22/2015 16:37
THALLIUM	ND	0.2	UG/L	10	6/22/2015 16:37
ZINC	160	20	UG/L	10	6/22/2015 16:37

SAMPLE SUMMARY REPORT

Client:

Analyses

Environmental Alternatives, Inc.

Project:

KSS1506 Kwikstop

Sample ID:

Tank #2

Legal Location:

Collection Date: 6/15/2015 08:37

Date: 23-Jun-15

Work Order: 1506284

Lab ID: 1506284-1

Matrix: WATER

Percent Moisture:

Report

Oual

Limit Units

Dilution

Factor

Date Analyzed

Explanation of Qualifiers

Radiochemistry:

U or ND - Result is less than the sample specific MDC.

- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- W DER is greater than Warning Limit of 1.42
- * Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.
- # Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.
- G Sample density differs by more than 15% of LCS density.
- D DER is greater than Control Limit
- M Requested MDC not met
- LT Result is less than requested MDC but greater than achieved MDC.

- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
- P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits
- NC Not Calculated for duplicate results less than 5 times MDC
- B Analyte concentration greater than MDC.
- B3 Analyte concentration greater than MDC but less than Requested
- MOC

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

Result

- U or ND Indicates that the compound was analyzed for but not detected.
- E The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.
- M Duplicate injection precision was not met.
- N Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.
- Z Spiked recovery not within control limits. An explanatory note may be included in the narrative.
- * Duplicate analysis (relative percent difference) not within control limits.
- S SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

U or ND - Indicates that the compound was analyzed for but not detected.

- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample.
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products:
- gasoline
- JP-8 - diesel
- mineral spirits
- motor oil
- Stoddard solvent
- bunker C

LIMS Version: 6.768

Client:

Environmental Alternatives, Inc.

Work Order:

1506284

Project:

KSS1506 Kwikstop

Date: 6/23/2015 2:55:

QC BATCH REPORT

Batch ID: H	G150617-3-1	Instrument ID CE	TAC7500		Method: E	PA245.1						
LCS	Sample ID: HG1500	617-3			L	Inits: MG/L		Analysi	s Date:	6/18/201	5 12:55	
Client ID:		Run II	D: HG150618 -	2A1			P	rep Date: 6/17	/2015	DF:	1	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	RPD Ref	RPD	RPD Limit	Qual
MERCURY		0.00105	0.0002	0.001		105	85-115				20	
MB	Sample ID: HG1500	617-3			U	Inits: MG/L		Analysi	s Date:	6/18/201	5 12:53	
Client ID:		Run II	D: HG150618 -	2A1			P	rep Date: 6/17	/2015	DF:	1	
					ODK D-f		Control	Decision	RPD		RPD	
Analyte		Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Limit	Level	Ref	RPD	Limit	Qual
Analyte MERCURY		Result	ReportLimit 0.0002	SPK Val		%REC				RPD		Qual

Client:

Environmental Alternatives, Inc.

Work Order:

1506284

Project:

KSS1506 Kwikstop

QC BATCH REPORT

Batch ID: IP	150617-4-1		Instrument ID ICF	MS2		Method:	EPA200.8						
LCS	Sample ID:	IP150617-4					Units: UG/L	/L Analysis Date: 6/22/2015 16:33					
Client ID:			Run II): IM150622- 1	0A4			F	Prep Date: 6/17	/2015	DF:	: 10	
Analyte			Result	ReportLimit	SPK Val	SPK Re Value	f %REC	Control Limit	Decision Level	RPD Ref	RPD	RPD Limit	Qual
ANTIMONY			31.2	0.3	30		104	85-115				20	
ARSENIC			105	2	100		105	85-115	Marian M. Parish hash on hard contact Marian Parish do do de Tarab de			20	
BARIUM			110	1	100		110	85-115				20	
BORON			1080	50	1000		108	85-115				20	
CADMIUM			33.8	0.3	30		113	85-115				20	
CHROMIUM			512	10	500		102	85-115				20	
COPPER			1070	10	1000		107	85-115				20	
IRON			5380	100	5000		108	85-115				20	
LEAD			50.6	0.5	50		101	85-115				20	
MANGANESE			105	2	100		105	85-115				20	
MOLYBDENU	М		102	1	100		102	85-115				20	
NICKEL			522	5	500		104	85-115				20	
SELENIUM			109	1	100		109	85-115				20	
SILVER			11	0.1	10		110	85-115				20	
STRONTIUM			104	1	100		104	85-115				20	
THALLIUM			2.22	0.2	2		111	85-115				20	
BERYLLIUM			49.9	0.5	50		100	85-115	All and a second a			20	
ZINC			2130	20	2000		107	85-115				20	

Client:

Environmental Alternatives, Inc.

Work Order:

1506284

Project:

KSS1506 Kwikstop

QC BATCH REPORT

Batch ID: IP1	50617-4-1		Instrument ID ICF	PMS2		Method: El	PA200.8						
МВ	Sample ID:	IP150617-4				Ur	nits: UG/L		Analysi	s Date:	6/22/201	5 16:30	
Client ID:	D:		Run II	D: IM150622-1	0A4			i	Prep Date: 6/17	/2015	DF:		
			Danish	Donard imit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	RPD Ref	RPD	RPD Limit	Qua
Analyte			Result	ReportLimit	SPK Vai	7 4140	WKEC.		2010.				Qua
ANTIMONY			ND	0.3									
ARSENIC			ND	2									
BARIUM			1.4	1									
BORON			ND	50									
CADMIUM			ND	0.3									
CHROMIUM			ND	10									
COPPER			ND	10									
IRON			ND	100									
LEAD			ND	0.5									
MANGANESE			ND	2									
MOLYBDENUN	1		ND	1									
NICKEL			ND	5									
SELENIUM			ND	1									
SILVER			ND	0.1									
STRONTIUM			2.8	1									
THALLIUM			ND	0.2			, , , , , , , , , , , , , , , , , , ,						
BERYLLIUM			ND	0.5									
ZINC	L. L		ND	20									

The following samples were analyzed in this batch:

1506284-1

Ft. Collins, Colorado

LIMS Version: 6.770

Page 1 of 1

Tuesday, June 30, 2015

Angela Bellantoni Environmental Alternatives, Inc. 1107 Main Street Canon City, CO 81212

Re: ALS Workorder: 1506452

Project Name: Kwikstop Project Number: KSS1506

Dear Ms. Bellantoni:

One water sample was received from Environmental Alternatives, Inc., on 6/24/2015. The sample was scheduled for the following analysis:

GC/MS Volatiles

The results for these analyses are contained in the enclosed reports.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, ALS certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Thank you for your confidence in ALS Environmental. Should you have any questions, please call.

Sizicerely.

ALS d.nv:ronmer)tal Amy R. Wolf

Project Manager

ADDRESS 225 Commerce Drive, Fort Collins, Colorado, USA 80524 | PHONE +1 970 490 1511 | FAX +1 970 490 1522 ALS GROUP USA, CORP. Part of the ALS Laboratory Group An ALS Limited Company

1506452

GC/MS Volatiles:

The sample was analyzed using GC/MS following the current revision of SOP 525 based on SW-846 Method 8260C.

- All criteria for initial calibration verification were met with the exception of iodomethane which was low. This compound was not detected in the associated sample.
- All compounds in the daily (continuing) calibration verifications were within 20%D with the
 exceptions of vinyl acetate and naphthalene which were high. These compounds were not
 detected in the associated sample.
- The method blank had methylene chloride detected below the reporting limit. This compound was detected in the associated sample, so the data were flagged.

All remaining acceptance criteria were met.

ALS Environmental – Fort Collins is accredited by the following accreditation bodies for various testing scopes in accordance with requirements of each accreditation body. All testing is performed under the laboratory management system, which is maintained to meet these requirement and regulations. Please contact the laboratory or accreditation body for the current scope testing parameters.

ALS Environmental – Fort Collins								
Accreditation Body	License or Certification Number							
Alaska (AK)	UST-086							
Alaska (AK)	CO01099							
Arizona (AZ)	AZ0742							
California (CA)	06251CA							
Colorado (CO)	CO01099							
Connecticut (CT)	PH-0232							
Florida (FL)	E87914							
Idaho (ID)	CO01099							
Kansas (KS)	E-10381							
Kentucky (KY)	90137							
L-A-B (DoD ELAP/ISO 170250)	L2257							
Maryland (MD)	285							
Missouri (MO)	175							
Nebraska(NE)	NE-OS-24-13							
Nevada (NV)	CO000782008A							
New Jersey (NJ)	CO003							
New York (NY)	12036							
North Dakota (ND)	R-057							
Oklahoma (OK)	1301							
Pennsylvania (PA)	68-03116							
Tennessee (TN)	2976							
Texas (TX)	T104704241							
Utah (UT)	CO01099							
Washington (WA)	C1280							

Sample Number(s) Cross-Reference Table

OrderNum: 1506452

Client Name: Environmental Alternatives, Inc.

Client Project Name: Kwikstop Client Project Number: KSS1506

Client PO Number:

Client Sample Number	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
Tank #2	1506452-1		WATER	23-Jun-15	8:15

PRESERVATION KEY

ALS Environmental

225 Commerce Drive, Fort Collins, Colorado 80524 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522

Chain-of-Custody

Turnaround time for samples received after 2 p.m. will be calculated beginning from the next business day.

Turnaround time for samples received Saturday will be calculated beginning from the next business day.

1506452

ALS WORKORDER #

(ALS)			TURNAROUN	TIME 2	2 W	uhs l	SAMP	LER A.	Bell	an	tom	-			PAG	3E		~10	A	
PROJECT NAME	KuthStop		8	ITE ID	Per	nrose									DISPO	SAL	BYL	A	or	RETURN
PROJECT No.	KS51506		EDD FO	RMAT								PARA	METER	VMETH	OD RE	QUEST	FOR A	INALY!	SIS	
			PURCHASE O	RDER						Α	VC	C	S							
COMPANY NAME	EAI		BILL TO COM	PANY					100	В							Mondanariamina			
SEND REPORT TO	Angela Bellantoni		INVOICE AT	TN TO						С										
ADDRESS	1104 Main St		ADD	RESS						D										
CITY/STATE/ZIP	CANTON CUY LO 81212		CITY / STATI	E / ZIP						E				***********						VIII. 11.
PHONE	719-275- 8951		Р	HONE					*****	F										
FAX	719-274-1715			FAX						G										
E-MAIL	1100 Main St Cantrady LU 81212 719-275-8951 719-275-1715 angelo Genialtanatius.	con	E	MAIL						Н						***************************************			***************************************	
	ı)							Mary Control		1										
										J										
LAB ID	FIELD ID		MATRIX	SAMPI		SAMPLE TIME	#OF BOTTLES	PRESERVATIVE	QC	A	В	С	D	E	F	G	н	1	J	SEE NOTES SECTION
	tank#2		W	6/23	1/14	5:18A	3	V	~	V										
			· · · · · · · · · · · · · · · · · · ·																	
										ļ										
																 		 		
			***************************************							<u> </u>										
																				
				<u> </u>								 				 -		 		
														ļ				<u> </u>		
																		<u> </u>		
									<u> </u>											
*Time Zone (Circle):	EST CST MST PST Matrix: O = oil S = soil NS =	non-soil	solid W = wat	er L≖liqu	id E	= extract F = filte	er	- L		L	1			L	L					L
	NOTES				Form	20219		SIGNATURE					NTED N				DATE			TIME
<u> </u>			TLEVEL/QC QUIRED		RELIN	IQUISHED BY	ann	Mou	eu		Angr	lak	Bu	lan	hn	4/2	3/15		2	:158
of 13			Summary (Standard QC)		RE	CEIVED BY	EX	Potro			Er	n	20-	ers	on	6:	24/1	5		40
-			LEVEL II (Standard QC)		RELIA	IQUISHED BY														
			LEVEL III (Std	ır	DE	CENED BY	-													

RECEIVED BY

RELINQUISHED BY

RECEIVED BY

QC + forms) LEVEL IV (Std

QC + forms + raw

1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaOH/ZnAcetale 8-NaHSO4 7-4°C 8-Other

AS

ALS Environmental - Fort Collins CONDITION OF SAMPLE UPON RECEIPT FORM

	Client: EA Workorder No: 1500	e45.	2	
	Project Manager: ARW Initials: ECP	Date:	6/24/	5
1.	Does this project require any special handling in addition to standard ALS procedures?		YES	NO
2.	Are custody seals on shipping containers intact?	NONE	YES	NO
= 3.		NONE	(YES)	МО
4.	Is there a COC (Chain-of-Custody) present or other representative documents?		YES	NO
5.	1 20 C 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		YES	NO
6.	Is the COC in agreement with samples received? (IDs, dates, times, no. of samples, no. of containers, matrix, requested analyses, etc.)		YES	NO
7.	Were airbills / shipping documents present and/or removable?	DROP OFF	YES	NO
	Are all aqueous samples requiring preservation preserved correctly? (excluding volatiles)	(N/A)	YES	NO
	Are all aqueous non-preserved samples pH 4-9?	N/A	YES	NO
	Is there sufficient sample for the requested analyses?	68.08.65	YES	NO
	Were all samples placed in the proper containers for the requested analyses?		YES	NO
	Are all samples within holding times for the requested analyses?		YES	NO
	Were all sample containers received intact? (not broken or leaking, etc.)		YES	NO
	Are all samples requiring no headspace (VOC, GRO, RSK/MEE, Rx CN/S, radon) headspace free? Size of bubble: X < green pea > green pea	N/A	YES	NO
13	Amount of sediment: X dusting moderate heavy Amount both les	N/A	YES	NO
	6. Were the samples shipped on ice?		YES	NO
L	Were cooler temperatures measured at 0.1-6.0°C? IR gun used*: #2	RAD ONLY	YES	NO
	Temperature (°C): 2.2 No. of custody seals on cooler: * DOT Survey/Acceptance Information External μR/hr reading: Background μR/hr reading: Were external μR/hr readings ≤ two times background and within DOT acceptance criteria? (YES/NO/NA (If no, see Additional Information: PROVIDE DETAILS BELOW FOR A NO RESPONSE TO ANY QUESTION ABOVE, EXAMINATION SOME PROVIDE OF A NO CUSTODY SEE ON THE BOOX BUT THE COOLER had SECUL.	Form 008.) RCEPT #1 A PUC TO COUST	ND#16. Wer	Se
	f applicable, was the client contacted? YES / NO (NA) Comact: Project Manager Signature / Date: *IR Gun #2: Oakton, SN 29922500201-0066	ime:		

*IR Gun #2: Oakton, SN 29922500201-0066 *IR Gun #4: Oakton, SN 2372220101-0002

SAMPLE SUMMARY REPORT

Client:

Environmental Alternatives, Inc.

Project:

KSS1506 Kwikstop

Sample ID: Legal Location: Tank #2

Collection Date: 6/23/2015 08:15

Date: 30-Jun-15

Work Order: 1506452

Lab ID: 1506452-1

Matrix: WATER

Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
GC/MS Volatiles		SW8	260_25		Prep Date: 6/24/2015	PrepBy: JXK
DICHLORODIFLUOROMETHANE	ND		1	UG/L	1	6/24/2015 14:46
CHLOROMETHANE	ND		1	UG/L	1	6/24/2015 14:46
VINYL CHLORIDE	ND		1	UG/L	1	6/24/2015 14:46
BROMOMETHANE	ND		1	UG/L	1	6/24/2015 14:46
CHLOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
TRICHLOROFLUOROMETHANE	ND		1	UG/L	1	6/24/2015 14:46
1,1-DICHLOROETHENE	ND		1	UG/L	1	6/24/2015 14:46
1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
ACETONE	17		10	UG/L	1	6/24/2015 14:46
IODOMETHANE	ND		1		1	6/24/2015 14:46
CARBON DISULFIDE	0.6	J	1		1	6/24/2015 14:46
METHYLENE CHLORIDE	0.51	JB	1		1	6/24/2015 14:46
TRANS-1,2-DICHLOROETHENE	ND		1		1	6/24/2015 14:46
METHYL TERTIARY BUTYL ETHER	ND		1	UG/L	1	6/24/2015 14:46
1,1-DICHLOROETHANE	ND		1		1	6/24/2015 14:46
VINYL ACETATE	ND		2	UG/L	1	6/24/2015 14:46
CIS-1,2-DICHLOROETHENE	ND		1	UG/L	1	6/24/2015 14:46
2-BUTANONE	ND		10	UG/L	1	6/24/2015 14:46
BROMOCHLOROMETHANE	ND		1	UG/L	1	6/24/2015 14:46
CHLOROFORM	6.9		1	UG/L	1	6/24/2015 14:46
1,1,1-TRICHLOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
2,2-DICHLOROPROPANE	ND		1	UG/L	1	6/24/2015 14:46
CARBON TETRACHLORIDE	ND		1	UG/L	1	6/24/2015 14:46
1,1-DICHLOROPROPENE	ND		1	UG/L	1	6/24/2015 14:46
1,2-DICHLOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
BENZENE	ND		1	UG/L	1	6/24/2015 14:46
TRICHLOROETHENE	ND		1	UG/L	1	6/24/2015 14:46
1,2-DICHLOROPROPANE	ND		1	UG/L	1	6/24/2015 14:46
DIBROMOMETHANE	ND		1	UG/L	1	6/24/2015 14:46
BROMODICHLOROMETHANE	ND		1	UG/L	1	6/24/2015 14:46
CIS-1,3-DICHLOROPROPENE	ND		1	UG/L	1	6/24/2015 14:46
4-METHYL-2-PENTANONE	17		10	UG/L	1	6/24/2015 14:46
TOLUENE	2		1	UG/L	1	6/24/2015 14:46
TRANS-1,3-DICHLOROPROPENE	ND		1	UG/L	1	6/24/2015 14:46
1,1,2-TRICHLOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
2-HEXANONE	ND		10	UG/L	1	6/24/2015 14:46
TETRACHLOROETHENE	ND			UG/L	1	6/24/2015 14:46
1,3-DICHLOROPROPANE	ND		1	UG/L	1	6/24/2015 14:46
DIBROMOCHLOROMETHANE	ND		1	UG/L	1	6/24/2015 14:46
1,2-DIBROMOETHANE	ND			UG/L	1	6/24/2015 14:46
1-CHLOROHEXANE	ND		1	UG/L	1	6/24/2015 14:46
CHLOROBENZENE	ND		1		1	6/24/2015 14:46
1,1,1,2-TETRACHLOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
ETHYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
M+P-XYLENE	0.34	J	1		1	6/24/2015 14:46
O-XYLENE	ND		1	UG/L	1	6/24/2015 14:46

ALS Environmental -- FC

LIMS Version: 6.770

SAMPLE SUMMARY REPORT

Client:

Environmental Alternatives, Inc.

Project:

KSS1506 Kwikstop

Sample ID:

Tank #2

Legal Location:

Collection Date: 6/23/2015 08:15

Date: 30-Jun-15

Date. 30-3un-1.

Work Order: 1506452

Lab ID: 1506452-1

Matrix: WATER

Percent Moisture:

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
STYRENE	ND		1	UG/L	1	6/24/2015 14:46
BROMOFORM	ND		1	UG/L	1	6/24/2015 14:46
ISOPROPYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
1,2,3-TRICHLOROPROPANE	ND		1	UG/L	1	6/24/2015 14:46
1,1,2,2-TETRACHLOROETHANE	ND		1	UG/L	1	6/24/2015 14:46
BROMOBENZENE	ND		1	UG/L	1	6/24/2015 14:46
N-PROPYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
2-CHLOROTOLUENE	ND		1	UG/L	1	6/24/2015 14:46
1,3,5-TRIMETHYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
4-CHLOROTOLUENE	ND		1	UG/L	1	6/24/2015 14:46
TERT-BUTYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
1,2,4-TRIMETHYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
SEC-BUTYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
1,3-DICHLOROBENZENE	ND		1	UG/L	1	6/24/2015 14:46
P-ISOPROPYLTOLUENE	ND		1	UG/L	1	6/24/2015 14:46
1,4-DICHLOROBENZENE	ND		1	UG/L	1	6/24/2015 14:46
N-BUTYLBENZENE	ND		1	UG/L	1	6/24/2015 14:46
1,2-DICHLOROBENZENE	ND		1	UG/L	1	6/24/2015 14:46
1,2-DIBROMO-3-CHLOROPROPANE	ND		2	UG/L	1	6/24/2015 14:46
1,2,4-TRICHLOROBENZENE	ND		1	UG/L	1	6/24/2015 14:46
HEXACHLOROBUTADIENE	ND		1	UG/L	1	6/24/2015 14:46
NAPHTHALENE	ND		1	UG/L	1	6/24/2015 14:46
1,2,3-TRICHLOROBENZENE	ND		1	UG/L	1	6/24/2015 14:46
Surr: DIBROMOFLUOROMETHANE	103		84-118	%REC	1	6/24/2015 14:46
Surr: TOLUENE-D8	100		85-115	%REC	1	6/24/2015 14:46
Surr: 4-BROMOFLUOROBENZENE	99		85-115	%REC	1	6/24/2015 14:46

SAMPLE SUMMARY REPORT

Client:

Analyses

Environmental Alternatives, Inc.

Project:

KSS1506 Kwikstop

Sample ID:

Tank #2

Legal Location:

Collection Date: 6/23/2015 08:15

Date: 30-Jun-15

Work Order: 1506452

Lab ID: 1506452-1

Matrix: WATER

Percent Moisture:

Report

Limit Units

Qual

Dilution

Factor

Date Analyzed

Explanation of Qualifiers

Radiochemistry:

U or ND - Result is less than the sample specific MDC

- Y1 Chemical Yield is in control at 100-110%. Quantitative yield is assumed.
- Y2 Chemical Yield outside default limits.
- W DER is greater than Warning Limit of 1.42
- * Aliquot Basis is 'As Received' while the Report Basis is 'Dry Weight'.
- # Aliquot Basis is 'Dry Weight' while the Report Basis is 'As Received'.
- G Sample density differs by more than 15% of LCS density.
- D DER is greater than Control Limit
- M Requested MDC not met.
- LT Result is less than requested MDC but greater than achieved MDC.

- M3 The requested MDC was not met, but the reported activity is greater than the reported MDC.
- L LCS Recovery below lower control limit.
- H LCS Recovery above upper control limit.
- P LCS, Matrix Spike Recovery within control limits.
- N Matrix Spike Recovery outside control limits
- NC Not Calculated for duplicate results less than 5 times MDC
- B Analyte concentration greater than MDC.
- B3 Analyte concentration greater than MDC but less than Requested
- MDC

Inorganics:

B - Result is less than the requested reporting limit but greater than the instrument method detection limit (MDL).

Result

- U or ND Indicates that the compound was analyzed for but not detected
- E The reported value is estimated because of the presence of interference. An explanatory note may be included in the narrative.
- M Duplicate injection precision was not met.
- N Spiked sample recovery not within control limits. A post spike is analyzed for all ICP analyses when the matrix spike and or spike duplicate fail and the native sample concentration is less than four times the spike added concentration.
- Z Spiked recovery not within control limits. An explanatory note may be included in the narrative.
- * Duplicate analysis (relative percent difference) not within control limits.
- S SAR value is estimated as one or more analytes used in the calculation were not detected above the detection limit.

Organics:

- U or ND Indicates that the compound was analyzed for but not detected.
- B Analyte is detected in the associated method blank as well as in the sample. It indicates probable blank contamination and warns the data user.
- E Analyte concentration exceeds the upper level of the calibration range.
- J Estimated value. The result is less than the reporting limit but greater than the instrument method detection limit (MDL).
- A A tentatively identified compound is a suspected aldol-condensation product.
- X The analyte was diluted below an accurate quantitation level.
- * The spike recovery is equal to or outside the control criteria used.
- + The relative percent difference (RPD) equals or exceeds the control criteria.
- G A pattern resembling gasoline was detected in this sample.
- D A pattern resembling diesel was detected in this sample.
- M A pattern resembling motor oil was detected in this sample.
- C A pattern resembling crude oil was detected in this sample.
- 4 A pattern resembling JP-4 was detected in this sample.
- 5 A pattern resembling JP-5 was detected in this sample.
- H Indicates that the fuel pattern was in the heavier end of the retention time window for the analyte of interest.
- L Indicates that the fuel pattern was in the lighter end of the retention time window for the analyte of interest.
- Z This flag indicates that a significant fraction of the reported result did not resemble the patterns of any of the following petroleum hydrocarbon products:
- gasoline - JP-8
- diesel
- mineral spirits
- motor oil
- Stoddard solvent
- bunker C

LIMS Version: 6.770

Client:

Environmental Alternatives, Inc.

Work Order:

1506452

Project:

KSS1506 Kwikstop

Date: 6/30/2015 5:22: **QC BATCH REPORT**

Batch ID: VL150624-4-1	Instrument ID HP	V1		Method:	SW8260_25						
LCS Sample ID: VL150624-	4				Units: UG/L		Analysi	s Date: 6	/24/201	5 11:13	
Client ID:	Run II	D: VL150624 -4	ŀA			F	Prep Date: 6/24	/2015	DF:	1	
Analyte	Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	RPD Ref	RPD	RPD Limit	Qual
1,1-DICHLOROETHENE	9.87	1	10		99	77-119		· · · · · · · · · · · · · · · · · · ·		20	
BENZENE	9.91	1	10		99	83-117				20	
TRICHLOROETHENE	9.78	1	10		98	83-117				20	
TOLUENE	10	1	10		100	82-113				20	
CHLOROBENZENE	10.5	1	10		105	81-113				20	
Surr: DIBROMOFLUOROMETHANE	25.5		25		102	84-118					
Surr: TOLUENE-D8	25.1		25		100	85-115					
Surr: 4- BROMOFLUOROBENZENE	25.3		25		101	85-115					
LCSD Sample ID: VL150624-	4				Units: UG/L		Analysi	s Date: 6	/24/201	5 12:00	10 11 15 10 10 10 11 11 11 11 11
Client ID:	Run II	D: VL150624 -4			Prep Date: 6/24/2015			DF:			
Analyte	Result	ReportLimit	SPK Val	SPK Ref Value	%REC	Control Limit	Decision Level	RPD Ref	RPD	RPD Limit	Qua
1,1-DICHLOROETHENE	9.9	1	10		99	77-119		9.87	0	20	
BENZENE	10.1	1	10		101	83-117		9.91	2	20	
TRICHLOROETHENE	9.65	1	10		97	83-117		9.78	1	20	
TOLUENE	9.61	1	10		96	82-113		10	4	20	
CHLOROBENZENE	9.92	1	10		99	81-113		10.5	5	20	
	26.1		25		104	84-118			2		
Surr: DIBROMOFLUOROMETHANE											
Surr: DIBROMOFLUOROMETHANE Surr: TOLUENE-D8	24.7		25		99	85-115			2		

Client:

Environmental Alternatives, Inc.

Work Order:

1506452

Project:

KSS1506 Kwikstop

QC BATCH REPORT

Batch ID: VL150624-4-1 Ins	trument ID HP			Method: SI							
MB Sample ID: VL150624-4				Ur	nits: UG/L		Analysi	is Date:	6/24/201	15 14:22	
Client ID:	Run II	D: VL150624 -4	IA.			- Pr	ep Date: 6/24	/2015	DF	: 1	
				SPK Ref		Control	Decision	RPD		RPD	
Analyte	Result	ReportLimit	SPK Val	Value	%REC	Limit	Level	Ref	RPD	Limit	Qua
DICHLORODIFLUOROMETHANE	ND	1									
CHLOROMETHANE	ND	1					······				
VINYL CHLORIDE	ND	1									
BROMOMETHANE	ND	1									
CHLOROETHANE	ND	1		· · · · · · · · · · · · · · · · · · ·							
TRICHLOROFLUOROMETHANE	ND	1					***************************************				
1,1-DICHLOROETHENE	ND	1									
1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	ND	1									
ACETONE	ND	10									
IODOMETHANE	ND	1									
CARBON DISULFIDE	ND	1									
METHYLENE CHLORIDE	0.84	1									J
TRANS-1,2-DICHLOROETHENE	ND	1									
METHYL TERTIARY BUTYL ETHER	ND	1									
1,1-DICHLOROETHANE	ND	1									
VINYL ACETATE	ND	2									
CIS-1,2-DICHLOROETHENE	ND	1									
2-BUTANONE	ND	10									
BROMOCHLOROMETHANE	ND	1									
CHLOROFORM	ND	1									
1,1,1-TRICHLOROETHANE	ND	1									
2,2-DICHLOROPROPANE	ND	1									
CARBON TETRACHLORIDE	ND	1									
1,1-DICHLOROPROPENE	ND	1									
1,2-DICHLOROETHANE	ND	1									
BENZENE	ND	1									
TRICHLOROETHENE	ND	1									
1,2-DICHLOROPROPANE	ND	1									
DIBROMOMETHANE	ND	1			T						
BROMODICHLOROMETHANE	ND	1									
CIS-1,3-DICHLOROPROPENE	ND	1									
4-METHYL-2-PENTANONE	ND	10					management A				
TOLUENE	ND	1									
TRANS-1,3-DICHLOROPROPENE	ND	1		V							
1,1,2-TRICHLOROETHANE	ND	1	***************************************					***			
2-HEXANONE	ND	10							***		
TETRACHLOROETHENE	ND	1			.,						
1,3-DICHLOROPROPANE	ND	1									
DIBROMOCHLOROMETHANE	ND	1			w						
1,2-DIBROMOETHANE	ND	1									

QC Page: 2 of 3